
Basics of MD Hashes and Hash-Based Signatures

John Kelsey, NIST and KU Leuven

: 1 / 40

Overview of Talk

SPHINCS+ attack depends on a lot of obscure details
In this talk, I’m going to cover some basics to make the attack
easier to understand.

1. Some internal details of SPHINCS+

2. Some internal details of SHA256

: 2 / 40

Part 1: Hash based signatures

x
0,0

x
0,1

x
0,2

x
0,15 Y

0
...

x
1,0

x
1,1

x
1,2

x
1,15 Y

1
...

.

.

.

x
63,0

x
63,1

x
63,2

x
63,15 Y

63
...

public
key

private
key

4 bits (0..15) encoded in each hash chain

checksum

x
64,0

x
64,1

x
64,2

x
64,15 Y

64
...

x
65,0

x
65,1

x
65,2

x
65,15 Y

65
...

x
66,0

x
66,1

x
66,2

x
66,15 Y

66
...

Hash-Based Signatures: 3 / 40

Preliminaries: Hash Functions

What do we need from a hash function?

I Collision resistance (Important generally, not for our attack)

I Preimage resistance

I Second preimage resistance

I Many other properties may be important for other applications

Note: cryptographic hash functions are designed to behave
randomly.

Hash-Based Signatures: 4 / 40

Generic Attacks

For any hash function, we have these generic attacks:
I Preimages (Given H, find X so HASH(X) = H)

Just try 2n values for X until HASH(X) = H.

I Second Preimages (Given X , find Y so HASH(X) = HASH(Y))

Just try 2n values for Y until HASH(X) = HASH(Y).

If hash function behaves randomly, these are the best we can do.

Hash-Based Signatures: 5 / 40

Multitarget attacks

I Suppose I have N different target hashes, H1,...,N

I Multitarget preimage: find X such that
HASH(X) ∈ {H1, . . . ,HN}

I This is N times faster than normal preimage attack

I SPHINCS+ has a huge number of target hash values–need to
prevent this attack!

Hash-Based Signatures: 6 / 40

Defense: Prefixes

I To prevent multitarget attacks, SPHINCS+ employs a unique
prefix
I Every single hash call in SPHINCS+ has a unique prefix
I prefix = PK .seed ‖ ADRS
I Result: Multitarget attacks blocked

H1 ← HASH(P1 ‖ M1)

. . .

HN ← HASH(PN ‖ MN)

I ...because hash Hi always has only one valid prefix, Pi

Hash-Based Signatures: 7 / 40

What’s a Signature

1. Public and Private keys:
I PK ,SK ←Generate()
I Private key: Only I know this
I Public key: I want everyone to know this

2. Signing:
I Sign with private key SK
I σ ←Sign(SK ,M)

3. Verification:
I Verify(σ,M,PK)→ “good” or “bad”

Normally, we can sign many messages with one key.

Hash-Based Signatures: 8 / 40

What’s a One-Time Signature? A Few-Times Signature?

I One-time signature: I can only sign one message per keypair
I Signing two different messages lets an attacker forge

signatures!
I Note: Signing same message twice is fine.
I WOTS+ used for one-time signatures in SPHINCS+

I Few-times signature: I can sign up to N distinct messages
safely
I Sign too many–leak too much information–attacker can forge

signatures
I N is usually not super large–like 10 or 20.
I FORS used for few-times signatures in SPHINCS+

SPHINCS+ uses both of these

Hash-Based Signatures: 9 / 40

Winternitz/WOTS+ Signatures

x
0,0

x
0,1

x
0,2

x
0,15 Y

0
...

x
1,0

x
1,1

x
1,2

x
1,15 Y

1
...

.

.

.

x
63,0

x
63,1

x
63,2

x
63,15 Y

63
...

public
key

private
key

4 bits (0..15) encoded in each hash chain

checksum

x
64,0

x
64,1

x
64,2

x
64,15 Y

64
...

x
65,0

x
65,1

x
65,2

x
65,15 Y

65
...

x
66,0

x
66,1

x
66,2

x
66,15 Y

66
...

I One-time signature scheme

I Based on hash chains

I Requires a checksum

I Used in SPHINCS+

WOTS+ is specific variant of Winternitz used in SPHINCS+
Hash-Based Signatures: 10 / 40

Digression: Hash Chain

X
0

X
1

Yhash hashhash X
2

X
3 hash hashhash

X
0

X
1

YX
2

X
3

=

I Compute each element in chain by hashing previous element.

Xi = HASH(Xi−1)

I Only need to know starting value–can compute all other
values from there.

I Can’t go backward in chain because of preimage resistance.

Hash-Based Signatures: 11 / 40

Winternitz: Signing 2 bits with one hash chain

x
0

x
1

x
2

x
3 Y

1 step

3 steps

signer: re
veal

verifier: x
1

4-3=1, so
a 1 was signed

I Compute hash chain x0 → x1 → x2 → x3 → y

I x0 is private signing key; y is public key

I To sign value 01, we reveal x1.

I To verify, walk rest of chain: y = HASH(HASH(HASH(x1)))

Works with chains of length 2w , for any w ≥ 1!

Hash-Based Signatures: 12 / 40

Hash chain of 2w entries encodes w bits

x
0,0

x
0,1

x
0,2

x
0,2w-1 Y

0
...

x
1,0

x
1,1

x
1,2

x
1,2w-1 Y

1
...

.

.

.

x
L-1,0

x
L-1,1

x
L-1,2

x
L-1,2w-1 YL-1...

2w hash values in each line-- (256/w) chains

Private
Key

Public
Key

Encode 1st w bits of hash

Encode 2nd w bits of hash

Encode last w bits of hash

.

.

.

So we can encode 256-bit hash with d256w e hash chains.

Hash-Based Signatures: 13 / 40

Problem: Attacker can increment values

Arrrows represent hash operations!

I Let: x0 → x1 → x2 → x3 → y

I y is public key

I To sign value 01, we reveal x1.
I Anyone can walk rest of chain: y = HASH(HASH(HASH(x1)))

I But anyone can change a signature on 01 to a signature on 10
or 11...

I ...just keep computing the hash!

This is why we need a checksum

Hash-Based Signatures: 14 / 40

The Winternitz checksum

I Write HASH(message) as a sequence of a 4-bit digits, t0,1,...,a−1

I max = a(2w − 1)

I checksum← max −
∑a

i=0 ti
I Now, walking forward on any chain requires walking backward

on checksum!

I Checksum is written as a base-16 number and encoded in
three more hash chains

Checksum ensures any change requires going backward on some
hash chain

Hash-Based Signatures: 15 / 40

Winternitz/WOTS+: Encoding the checksum

I Need 64 hash chains of length 24 to encode hash
I One for each 4 bits chunk of hash being signed.

I Maximum possible sum of values in those chains is:

64× 15 = 960

I 0 ≤ Checksum ≤ 960
Need lg(max +1) bits!

I Since each chain encodes 4 bits, we need three more chains to
encode checksum.

SPHINCS+ category 5, Winternitz signature is 67 hash values!

Hash-Based Signatures: 16 / 40

Making a WOTS+ Public Key in SPHINCS+ (1)

I Private key = X0...66,0, generated pseudorandomly.

I prefix[i,j] = the unique prefix for this one time key, this chain
(i), and this step (j)

I For each i = 0 . . . 66:
I For j = 1 . . . 15:

I Xi,j = HASH(prefix[i , j] ‖ Xi,j−1)

I Note: Each hash operation incorporates a unique prefix.

Hash-Based Signatures: 17 / 40

Making a WOTS+ Public Key in SPHINCS+ (2)
WOTS+ Signature

• Write digest as base-" (16)
number
• Append a base-" checksum

• (960 − <sum of digits>)
• Sign each digit #! of digest plus

checksum by:
• Hash +,!," (with prefix) -! times
• Put the result in the signature

• Note: The signature of 0xF is just
$%!

I Given final values in all 67 hash chains, X0...66,15

I Public key also includes a prefix for this particular one-time
key ID

I Public key preimage =

prefix ‖ X0,15 ‖ X1,15 ‖ . . . ‖ X66,15

I Public key = hash of public key preimage

Hash-Based Signatures: 18 / 40

How it’s done in SPHINCS+WOTS+ Signature

• Write digest as base-" (16)
number
• Append a base-" checksum

• (960 − <sum of digits>)
• Sign each digit #! of digest plus

checksum by:
• Hash +,!," (with prefix) -! times
• Put the result in the signature

• Note: The signature of 0xF is just
$%!

Hash-Based Signatures: 19 / 40

How do we use one-time keys?

I One-time signatures aren’t very useful–you want to sign many
times

I SPHINCS+ can sign up to 264 times

I First tool we need for this: A Merkle tree

Hash-Based Signatures: 20 / 40

Merkle Trees

PK
0

PK
1

PK
2

PK
3

PK
4

PK
5

PK
6

PK
7

PK
8

PK
9

PK
10

PK
11

PK
12

PK
13

PK
14

PK
15

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

Hash-Based Signatures: 21 / 40

A binary tree made by hashing things together!

PK
0

PK
1

PK
2

PK
3

PK
4

PK
5

PK
6

PK
7

PK
8

PK
9

PK
10

PK
11

PK
12

PK
13

PK
14

PK
15

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

I Make a list of 2n one-time signing keys, PK0,1,2,...,2n−1

I Hash each pair together to make input to next hash.

I Keep going until we reach the root.

The root contains the hash of all the leaves.

Hash-Based Signatures: 22 / 40

Merkle Tree Path

PK
0

PK
1

PK
2

PK
3

PK
4

PK
5

PK
6

PK
7

PK
8

PK
9

PK
10

PK
11

PK
12

PK
13

PK
14

PK
15

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H root

I I have a list of 2n items.
I Compute Merkle tree and give you root.
I Later, I can prove PKi is member of list with n hashes.

Hash-Based Signatures: 23 / 40

Hypertrees

32
 k

ey
s

root

32
 k

ey
s

32
 k

ey
s

32
 k

ey
s

PK
l

220 total signing keys available in a 4-level tree

I A hypertree is a ”tree of trees”

I Each tree is a Merkle tree full of one-time keys

I Each tree after the first is generated on the fly as needed

I Each tree has its root signed by a one-time key from the
previous tree

Hypertrees–Trees of Trees: 24 / 40

Big Idea

1. Generate Merkle Tree of 2k keys.

2. Use each key to sign a Merkle Tree of 2k trees.

3. Result: We have 2k
2

keys.

And we can iterate this process as many times as we like

Hypertrees–Trees of Trees: 25 / 40

Tree of Trees...of Keys

Getting 240 keys with 220-element Merkle trees:

Hypertrees–Trees of Trees: 26 / 40

Tree of Trees...of Keys

Getting 240 keys with 220-element Merkle trees:

I Generate a list of 220 one-time signing keys.
I For each of those keys, we have a tree of 220 one-time signing

keys we can generate.
I Using PRF, we can ensure we always generate same tree*.

I Produce paths through both trees + both signatures!

* This is critical–otherwise we might sign different things with
same key!

Hypertrees–Trees of Trees: 27 / 40

We can have many levels of trees

32
 k

ey
s

root

32
 k

ey
s

32
 k

ey
s

32
 k

ey
s

PK
l

220 total signing keys available in a 4-level tree

In SPHINCS+, we have huge numbers of trees

I Always around 264 leaves in the hypertree

I Leaves are used to sign few times signature keys

I SPHINCS+256s (slower/smaller version): 8 layers of tree,
each tree of depth 8

I SPHINCS+256f (faster/larger version): 17 layers of tree, each
of depth 4

Hypertrees–Trees of Trees: 28 / 40

SPHINCS+ Structure

Hypertrees–Trees of Trees: 29 / 40

Structure of SPHINCS+ signatures

I Top level Merkle tree
I Root = (some of) master public key
I Leaves = Winternitz one-time keys

I Hypertree of 264 or 268 one-time keys on bottom layer
I 8 layers of depth 8, or 17 layers of depth 4
I A Winternitz one-time key signs root of next Merkle tree
I Leaf of this tree = next WOTS key used.

I Messages are signed with FORS (few-time signature) keys
I The final one-time key in the hypertree always signs a FORS

key
I Each FORS key can sign a small number of times before losing

security
I This allows us to have smaller hypertree without losing security

Hypertrees–Trees of Trees: 30 / 40

SPHINCS+ Structure

Hypertrees–Trees of Trees: 31 / 40

Part 2: Hash functions and Merkle-Damg̊ard Hashes

Fiv h
0

m
0

F h
1

m
1

F h
2

m
2

F h
final

m
3
||10*L

Hypertrees–Trees of Trees: 32 / 40

Merkle-Damg̊ard hashes: How SHA256 is Made

Fiv h
0

m
0

F h
1

m
1

F h
2

m
2

F h
final

m
3
||10*L

iv h
0

m
0 h

1

m
1 h

2

m
2 h

final

m
3
||10*L

I Our result only applies to SPHINCS+ when it is using
SHA256 to get 256-bit security

I Understanding it requires looking ”under the hood” of
SHA256

Hypertrees–Trees of Trees: 33 / 40

Merkle-Damg̊ard Hashes (1)

Big idea: Make a good fixed-length hash function, then build a
variable-length hash from it.

Fiv h
0

m
0

F h
1

m
1

F h
2

m
2

F h
final

m
3
||10*L

I We need a fixed-length compression function, F (h,m)
I hin = hash chaining value, n bits. (Example n = 256)
I hout = hash chaining value, n bits.
I m = message block, w bits. (Example w = 512)

I Pad the message, break into w -bit chunks, and process
sequentially.

Hypertrees–Trees of Trees: 34 / 40

Merkle-Damg̊ard Hashes: How SHA2 Works

Fiv h
0

m
0

F h
1

m
1

F h
2

m
2

F h
final

m
3
||10*L

1. Pad message to integer multiple of 512 bits:
I 10* padding
I ...plus length of unpadded message (Merkle-Damg̊ard

strengthening)

2. Break padded message into 512-bit blocks m0,1,2,...,k−1.

3. h−1 = fixed initial value, iv .

4. hi ← F (hi−1,mi) for i = 0, 1, 2, . . . , k − 1.

5. Final hi is HASH(M)

Note: Only impact of m0...i is on hi

Hypertrees–Trees of Trees: 35 / 40

Herding Hash Functions

h
0

h
1

h
2

h
3

h
4

h
5

h
6

h
7

x
6

h
10

h
11

h
12

h
13

x 13

h
20

h
21

x 21

h
diamond

linking
message

iv P

Hypertrees–Trees of Trees: 36 / 40

A problem

I I want to carry out a multitarget preimage attack

I My messages all start with different prefixes

I What can I do?

Hypertrees–Trees of Trees: 37 / 40

The Diamond Structure: A Merkle-Tree Computed by
Finding Collisions.

I Starting from 2k different prefixes
I Find pairwise collisions to map these down to a single

intermediate hash value
I Result: A diamond structure that routes 2k input hash

chaining values into hash value

Note: Edges have multiple message blocks; nodes are hash
chaining values.

Hypertrees–Trees of Trees: 38 / 40

How this is used in our attack

Hypertrees–Trees of Trees: 39 / 40

Wrapup

I We’ve discussed internals of SPHINCS+
I WOTS+ signatures
I Merkle trees
I Hypertrees
I How SPHINCS+ works

I ...and internals of SHA256
I Merkle-Damg̊ard hashes
I Multitarget attacks
I The diamond structure

Hypertrees–Trees of Trees: 40 / 40

	Hash-Based Signatures
	Hypertrees–Trees of Trees

